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Abstract

Long noncoding RNAs (lncRNAs) represent a big category of noncoding RNA molecules, and increasing studies have shown
that they play important roles in various critical biological processes. They show a diversity of functions through diverse
mechanisms, among which regulating RNA molecules is one of the most popular ones. Given the big number of lncRNAs, it
becomes urgent and important to predict the RNA targets of lncRNAs in a large scale for the comprehensive understanding
of lncRNA functions and action mechanisms. Although several methods have been developed to predict RNA–RNA inter-
actions, none of them can be used to predict the RNA targets of lncRNAs in a large scale. Here we presented a tool, LncTar,
which shows the ability to efficiently predict the RNA targets of lncRNAs in a large scale. To test the accuracy of LncTar, we
applied it to 10 experimentally supported lncRNA–mRNA interactions. As a result, LncTar successfully predicted 8 (80%) of
the 10 lncRNA–mRNA pairs, suggesting that LncTar has a reliable accuracy. Finally, we believe that LncTar could be an effi-
cient tool for the fast identification of the RNA targets of lncRNAs. LncTar is freely available at http://www.cuilab.cn/lnctar.
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Introduction

The recent development of high-throughput technologies
showed that most of the human genome are transcribed and
discovered a big number of noncoding transcripts [1]. It was

reported that �75% of the human genome is transcribed to
RNAs; however, only �2% of the RNAs can be translated to pro-
teins [2, 3]. Thus, the majority of the human genome transcripts
are noncoding RNAs, especially long noncoding RNAs (lncRNAs)
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[4]. LncRNAs are generally defined as noncoding RNA molecules
>200 nucleotides (nt) in length [5]. Because lncRNAs usually
show low cross-species conservation, low expression levels and
high tissue specificity, historically people often argue against
their functionality [6]. In recent years, however, accumulating
studies showed that lncRNAs have complex and diverse func-
tions. And thus their dysfunctions could implicate in a wide
spectrum of diseases [7, 8]. To play various functions, lncRNAs
could select a diversity of mechanisms by interacting with dif-
ferent biological molecules, such as proteins [9], RNAs [10] and
DNA [11]. Among these lncRNA-interacting molecules, RNAs
represent one of the most popular ones. It has been shown that
lncRNAs could regulate a number of key biological processes by
interacting with their target RNAs. For instance, the binding of
lncRNA BACE1-AS with its target BACE1 mRNA increases BACE1
mRNA stability and thus regulates BACE1 mRNA and subse-
quently BACE1 protein expression in vitro and in vivo [12, 13].
Therefore, identifying the RNA targets of lncRNAs will be of
great help for the understanding of lncRNA functions and
mechanisms. It is thus becoming emergent and important to
develop efficient bioinformatics tools to predict RNA targets for
lncRNAs. Currently, our knowledge about the nature of
lncRNA–RNA interaction is very limited. lncRNAs are long and
thus could form complex tertiary structures for interacting with
other biological molecules. Because the tertiary structure of an
lncRNA plays key roles in its interacting with other molecules,
the prediction of interactions between lncRNAs and other mol-
ecules will become to be extremely difficult because no compu-
tational methods can solve the problems of lncRNA tertiary
structures. After careful checking the reported interactions of
lncRNAs with other molecules, we found that the tertiary struc-
tures play key roles in lncRNA–protein interactions. However,
we found that base pairing could play key roles in the
lncRNA–mRNA interactions [8, 14]. Moreover, it seems that ba-
sically the base pairing is the most simple and convenient way
for RNA–RNA interaction. Although the tertiary structures of
lncRNAs play some roles in lncRNA–RNA interaction, based on
the above analysis, we hypothesized that base pairing could
play key roles in lncRNA–RNA interaction.

Although some bioinformatics tools for predicting RNA–RNA
interactions have been developed, such as IntaRNA [15],
GUUGle [16], RactIP [17] and RNAup [18], none of them can be
used for the large-scale prediction of the RNA targets of
lncRNAs for the following reasons. Firstly, all of these methods
have limits to RNA size. For example, IntaRNA, a tool to predict
interacting regions between two RNA molecules by incorporat-
ing the accessibility of both interaction sites and the presence
of a seed interaction, requires the RNA size �2 kb. RactIP can

integrate approximate information on an ensemble of equilib-
rium joint structures into the objective function of integer pro-
gramming using posterior internal and external base-paring
probabilities. It limits the max RNA size to 1 kb. RNAup can be
combined with other faster methods for assessing RNA–RNA
interactions. The RNA size for RNAup is not bigger than 5 kb.
However, many lncRNAs and other RNA molecules are bigger
than the RNA size limits for the above tools. For example, 4180
(13%) of the lncRNAs and 25 088 (69%) of the human mRNAs are
bigger than 2 kb (Figure 1). As a result, these tools can not be
applied to a big number of RNA molecules. The second reason is
that these tools do not have a quantitative standard to deter-
mine whether two RNA molecules interact with each other
automatically. They only output the matching status of two
RNA molecules. Users need to manually judge whether two
RNA molecules interact with each other based on their expert
knowledge. As a result, these methods are not feasible for large-
scale prediction of RNA–RNA interactions. The third reason is
that the input parameters of these tools are complex and the
calculation results are heavily dependent on these parameters.
However, for most users, it is very difficult to determine suitable
values for these parameters. For example, RNAup requests
users to set the parameter of maximal length of the region of
interaction for two RNAs. However, it is difficult to know the
length of the interaction region between two RNA molecules.
Taken together, novel bioinformatics tools are needed for effi-
ciently predicting lncRNA–RNA interactions.

In this article, we present a novel bioinformatics tool,
LncTar, to explore lncRNA–RNA interactions by finding the min-
imum free energy joint structure of two RNA molecules based
on base pairing. LncTar overwhelmed the existing RNA–RNA
prediction tools on the following aspects. LncTar does not have
a limit to RNA size and can process all length of current RNA
molecules. More importantly, LncTar provides a quantitative
standard to automatically determine whether two RNA mol-
ecules interact with each other. Moreover, users only need to in-
put several exact parameters for LncTar, such as input file
name and output file name. In addition, the algorithm of LncTar
has a running time ofoðn2Þ, which makes it possible for fast and
global prediction of the RNA targets for given lncRNAs. When
an lncRNA binds to an RNA target, it probably has an unpaired
conformation [19]. However, most of the current RNA–RNA
interaction prediction methods do not take account of multiple
binding sites when evaluating the unpaired conformation
[19–21]. LncTar takes account of multiple binding sites using a
matching algorithm, which finds the region of the minimum
free energy joint structure between the input RNA sequences.
Finally, to evaluate the accuracy of LncTar, we applied it to 10

Figure 1. Distributions of the RNA size of the human lncRNAs (A) and the human mRNAs (B).
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experimentally supported lncRNA–mRNA interactions. As a re-
sult, LncTar successfully predicted 8 (80%) of the 10
lncRNA–mRNA pairs, suggesting that LncTar has a reliable
accuracy.

Methods and materials
Experimentally supported lncRNA–mRNA interaction
data

We downloaded the interaction data between lncRNAs and
other molecules from the LncRNADisease database [22] and the
NPinter database [23]. We next curated the lncRNA–mRNA
interactions if original references clearly described that the
lncRNA and the mRNA interact with each other directly. As a re-
sult, we obtained 10 lncRNA–mRNA interactions (Table 1),
which were taken as the experimentally supported lncRNA–
mRNA interaction data set to test the prediction accuracy of
LncTar.

Algorithms and implementation

Basically, we hypothesized that base pairing plays the critical
roles in RNA–RNA interactions. Given that, one important step
in real-time polymerase chain reaction (PCR) design is detecting
primer–dimer, which is also a process of base pairing in nature.
Therefore, the primer–dimer prediction algorithms such as
Autodimer [24] and MPprimer [25] shed light on the prediction
of RNA–RNA interaction. For predicting lncRNA–RNA inter-
actions, here LncTar modified the primer–dimer prediction al-
gorithm of PerlPrimer [26], which is an open source code
software for designing primers in standard, bisulphate and real-
time PCR. LncTar integrated the precise melting-temperature
and primer–dimer prediction algorithms for lncRNA–RNA inter-
action prediction [27]. LncTar also integrated the primer–dimer
checking program for calculating bimolecular secondary struc-
tures of input RNA molecules PCR.

LncTar first takes the input lncRNA and the other RNA mol-
ecule as the forward and reverse primers, respectively. And
then LncTar predicts RNA–RNA interactions by creating a two-
dimension binding matrix Mi between paired RNA molecules.
The complementarity of each pairing combination between the
two RNAs is recorded in Mi. For searching binding regions,
AutoDimer and Primer3 use the matching score [28], which is
not accuracy and reliable. Therefore, LncTar predicts binding re-
gions between paired RNAs using a Nearest-Neighbor method
base on thermodynamic parameters [29–31]. The major advan-
tage of this method is that it is more reliable and efficient than

the matching score method [24, 28]. LncTar evaluates the free
energy by walking through every binding region between the
two input RNA molecules. It reads the complementarity be-
tween the two RNAs from the matrix Mi and maximizes the
number of base pairs among interacting sequences. LncTar cal-
culates the approximate binding free energy, deltaG (dG), of
each pairing with the recent data that indicate the stability of
complementarity [29].

It has been reported that thermodynamics for double helix
formation between two-paired RNAs can be calculated with
Nearest-Neighbor parameters [32]. In the Nearest-Neighbor
model, enthalpy change ðDH�Þ, entropy change ðDS�Þ, free en-
ergy change ðDG�Þ and melting temperature Tm were calculated
[33]. Sequence dependent stability of two paired RNAs is deter-
mined by Nearest-Neighbor doublets. For example, the 10
unique internal doublets adopted in duplex RNA are AT/AT, TA/
TA, AA/TT, AC/GT, CA/TG, TC/GA, CT/AG, CG/CG, GC/GC and
GG/CC [32].

The total difference of free energy DG� between two paired
RNAs can be calculated from DH� and DS� using following for-
mula [29].

DG�T ¼ DH��TDS�

For a specific temperature, LncTar can compute the total
difference of free energy DG� using Nearest-Neighbor
doublets [30].

In the primer–dimer prediction, two kinds of primer–dimer
stability are calculated. One is the extensible dimer, which will
reduce the amplification of products. The other is the non-
extensible dimer, which can reduce the free primer population
in a reaction. In this study, our aim is to predict the interaction
of lncRNAs and RNAs, only the non-extensible dimers are re-
tained in LncTar, which can largely reduce running time of algo-
rithm. The flowchart of LncTar is shown as Figure 2.

User-defined parameters

LncTar introduced a novel parameter, normalized free energy
(ndG), which reflects the relative stability of internal base pairs
in the paired RNAs [34–36]. Given that normally longer RNA
molecules often have lower dG, it seems not suitable to take dG
as a standard to determine whether two RNA molecules interact

Table 1: The LncTar prediction results of the 10 experimentally sup-
ported pairs of lncRNAs and their target mRNAs

lncRNA mRNA target dG ndG

HIF1A-AS2 HIF1A_NM_181054 �1182.5 �0.5765
HIF1A-AS1 HIF1A_NM_001530 �168.35 �0.2582
BACE1-AS BACE1_NM_012104 �137.79 �0.1727
BC200 MAP1B �34.4 �0.1720
BC200 ARC �27.46 �0.1373
BDNF-AS_NR_033312.1 BDNF_NM_170734 �277.26 �0.1362
BC200 CAMK2A_NM_171825 �26.75 �0.1338
PEG3-AS1 PEG3_NM_006210 �1395.39 �1.0619
NPPA-AS1 NPPA �75.92 �0.0885
EMX2OS EMX2_NM_004098 �92.61 �0.0318

Figure 2. Flowchart of LncTar on predicting lncRNA-mRNA interactions.
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with each other. The ndG normalized by the size of RNA mol-
ecules will be better than the original dG. Therefore, in LncTar,
we introduced ndG, which was calculated by the following
equation:

ndG ¼ dG=min lengthln cRNA; lengthmRNAð Þ

where lengthln cRNA and lengthmRNA were the lengths of the candi-
date lncRNA and the other RNA sequences, respectively. The nd
G was set as a float number and could be a cutoff to determine
whether two RNA molecules interact with each other. LncTar
will determine two input RNA molecules interact with each
other if the calculated ndG is equal to or less than the ndG cutoff
(e.g. �0.1). One key point for the successful determination of
two interacting RNA molecules is the selecting of an appropriate
cutoff. In the simulation for 5000 random lncRNA–mRNA pairs,
we found the �0.1 is a cutoff point for the top 5% least ndG.
Moreover, the original primer–dimer detection algorithm sug-
gests a dG of �2.0 as the cutoff. Given that normally primers
are 20�30 nt in length, the ndG cutoff for primier–dimer detec-
tion is �0.1��0.15. Here, therefore, we suggest a normal ndG
cutoff, �0.1. The users could select a higher or lower cutoff,
for example �0.08, �0.13, �0.15 and even �0.20. It should be
noted that a lower cutoff will decrease predicted positives and
thus will miss more true positives. A higher cutoff, however,
will increase predicted positives and thus will get more false
positives.

In summary, although LncTar used the mathematical algo-
rithm of the primer–dimer detection program from PerlPrimer,
it has the following novel and significant contributions. (i)
Based on the observation of the nature of lncRNA–RNA inter-
action as described above, we believe that the primer–dimer de-
tection algorithm in PerlPrimer can be used in lncRNA–RNA
interaction although the original program is for short sequences
(normally 20–30 nt). It is the first time that the PerlPrimer algo-
rithm was adopted for lncRNA–RNA interaction prediction,
which is a totally novel scientific goal. (ii) LncTar introduced a
novel metric, normalized deltaG (ndG), which is not presented
in PerlPrimer. The ndG metric is a critical parameter in LncTar
because this parameter is used to automatically and quantita-
tively determine whether an lncRNA–RNA pair interacts with
each other.

Results
Input file format

To increase the generality of LncTar, two types of input file for-
mats are used. The first file format includes two input text files.
Each text file contains one list of RNA sequences. Each file has
two columns separated by the key ‘TAB’. Each line represents
one RNA molecule. The first column is the RNA name and the
second column is the RNA sequence. Figure 3 shows this type of
input file format. For this type of input file format, running
LncTar needs two text files of this format. In this case, each se-
quence in one text file will be paired with every sequence in the
other text file.

The second file format only needs one input text file. Each
line in the text file includes four columns separated by the key
of ‘TAB’. The first and the third columns are the names of two
RNA molecules. The second and the fourth columns are the se-
quences of the two RNAs. In this case, LncTar will pair the two
RNA molecules given in each line. This type of input file format
is shown as Figure 4.

Output file format

In LncTar, the predicted results are saved in an output text file
and both input file formats generate the same format of output
files. The outputs of the prediction results that passed the ndG
cutoff will be saved into one output file. Each line in the output
file represents one prediction for the paired RNAs, including the
names and length of them. In addition, the dG and ndG are pro-
vided as well. Moreover, if the users want to investigate the pos-
itions of paired bases between the two RNAs, LncTar can also
write the pairing graphical display to the output file, as shown
in Figure 5.

Validation of LncTar accuracy

To test the accuracy of LncTar, we applied it to known
lncRNA–RNA interactions. For this purpose, we first curated the
LncRNADisease database and the NPInter database for experi-
mentally supported lncRNA–mRNA interactions. As a result, we
obtained 10 lncRNA–mRNA interactions. We next applied
LncTar to the 10 lncRNA–mRNA interactions. To set a quantita-
tive ndG cutoff, we calculated the ndG of 5000 random
lncRNA–mRNA pairs using LncTar. The 5000 random
lncRNA–mRNA pairs were selected as the following process. We
first randomly selected 5000 lncRNAs from the whole human
lncRNAs and 5000 mRNAs from the whole human mRNAs.

Figure 3. The first type of file format. Each file contains two columns separated

by TAB key. Each line represents one RNA. For each line, the first column is the

RNA name and the second column is the RNA sequence.

Figure 4. The second type of file format. Each file contains four columns sepa-

rated by TAB key. Each line represents one pair of RNAs. For each line, the first

and the third columns are the RNA names. The second and the fourth columns

are the RNA sequences.
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We then paired the 5000 lncRNAs and the 5000 mRNAs one
by one. By this process, finally we obtained 5000 random
lncRNA–mRNA pairs. As a result, the cutoff for the lowest 5%
ndG of the 5000 random pairs is �0.1 (the green curve and the
black line in Figure 6). Therefore, here we set �0.1 as the cutoff
to determine whether two RNA molecules interact with each
other. That is, the lncRNA–mRNA pairs with a ndG��0.1 will be
predicted to be interacting RNA pairs. Otherwise, they do not
interact with each other. As a result, 8 (80%) of the 10 experi-
mentally supported lncRNA–mRNA interactions (red arrows in
Figure 6) are successfully predicted to be interacting RNA pairs
(Table 1), suggesting that these mRNAs could be the RNA targets
of the given lncRNAs. These results further indicate that LncTar
has a reliable accuracy.

It is very good if comparisons can be made between LncTar
and other tools. However, as we described above, none of the
current tools can run automatically. The users of these tools
need to manually set and understand a number of parameters
to determine whether the input RNAs interact with each other.
We take RNAup as an example. RNAup needs the users to
manually determine the maximal length of the region of inter-
action as an input parameter. However, it is difficult for users to
determine a suitable ‘maximal length of the region of inter-
action’. Moreover, different lncRNA–mRNA pairs should have

different ‘maximal length of the region of interaction’. In add-
ition, these tools do not have a quantitative standard to tell the
users whether the input RNAs interact. The users need to
manually determine whether the input RNAs interact with each
other based on their expert knowledge. For example, for the pair
of HIF1A-AS1::NM_001530, the binding region detected by
RNAup is only 25 nt using the default input parameters (the de-
fault value for ‘maximal length of the region of interaction’ is
25). If we set a bigger value to the parameter ‘maximal length of
the region of interaction’, for example 50, RNAup will predict a
50 nt long binding region. LncTar detected a much longer bind-
ing region (423 nt), which perfectly covered the predicted bind-
ing region by RNAup. However, it is extremely difficult for the
RNAup users to determine exactly 423 as the value of the input
parameter, ‘maximal length of the region of interaction’.
Moreover, when we set ‘maximal length of the region of inter-
action’ as 423, the RNAup server does not work for unknown
reasons.

Discussion

As one big class of important noncoding RNA molecules,
lncRNAs play critical roles in a number of biological processes.
They show a diversity of functions and mechanisms by binding

Figure 5. The format of output file. For each interaction, LncTar outputs the name and length of query RNA and target RNA. The dG, ndG, start positions and end pos-

itions of binding region in query RNA and target RNA. If the user selects to output the interaction details, a character graph will be shown below the above parameters.

A dot in the graph indicates there is a paired of bases in the two sequences. For this case, because the two input sequences are too big, only part of the binding region

is shown in this figure.

Figure 6. The LncTar prediction results of the 10 pairs of experimentally supported lncRNA–mRNA interactions. Density means the percentage of lncRNA–mRNA pairs

with specific ndG in the total random lncRNA–mRNA pairs.
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with diverse molecules, in which RNAs are one of the most im-
portant and popular ones. Uncovering the RNA targets of
lncRNAs will be an important way to understanding the func-
tions of lncRNAs and their roles in disease. Therefore, there is a
great demand for developing efficient bioinformatics methods
to globally predict the lncRNA–RNA interactions. Unfortunately,
none of the current methods can satisfy the above purpose. In
this study, we presented an efficient tool, LncTar, to predict the
specific interaction between an lncRNA and its target RNAs. The
main advantage of LncTar is its ability to efficiently predict the
lncRNA–RNA interactions, which is important and necessary for
the understanding of lncRNA functions and molecular mechan-
isms. The results confirmed that LncTar has a reliable accuracy.
However, LncTar has some limitations. For example, it over-
looks the stacked pair energy and loop energy in the process of
searching the stable joint structures formed by interacting RNA
pairs. Predicting joint secondary structures with all kinds of
loop interactions is a NP-complete problem [37]. In addition,
LncTar does not consider RNA tertiary structure, which could
play roles in RNA–RNA interactions. Although it seems that
base pairing plays a key role in lncRNA–RNA interaction accord-
ing to current publications [8, 14], both the tertiary structure [38]
and the secondary structure such as loop [38], stacking base
pairs [9] and helices [39] have roles in RNA–RNA interactions.
This may be the reason that two pairs of lncRNA–mRNA
(EMX2OS::NM_004098 and NPPA-AS1::NPPA) were not success-
fully predicted by LncTar. Therefore, it is important to integrate
the structure information to improve LncTar in the future.
Although limitations exist, we believe that LncTar provides
lncRNA researchers a valuable and efficient tool to predict the
RNA targets of candidate lncRNAs.

Key Points

• We presented a method and developed a tool, LncTar,
to predict the RNA targets of long noncoding RNAs.

• LncTar runs fast and therefore can be used for
large-scale identification of the RNA targets for long
noncoding RNAs.

• LncTar does not have limit to RNA size, indicating
LncTar can be used to all RNAs.

• LncTar has a high prediction accuracy.
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